Extracellular vesicles from Paracoccidioides pathogenic species transport polysaccharide and expose ligands for DC-SIGN receptors

نویسندگان

  • Roberta Peres da Silva
  • Christian Heiss
  • Ian Black
  • Parastoo Azadi
  • Jared Q. Gerlach
  • Luiz R. Travassos
  • Lokesh Joshi
  • Michelle Kilcoyne
  • Rosana Puccia
چکیده

Extracellular vesicles (EVs) mediate non-conventional transport of molecules across the fungal cell wall. We aimed at describing the carbohydrate composition and surface carbohydrate epitopes of EVs isolated from the pathogenic fungi Paracoccidioides brasiliensis and P. lutzii using standard procedures. Total EV carbohydrates were ethanol-precipitated from preparations depleted of lipids and proteins, then analyzed by chemical degradation, gas chromatography-mass spectrometry, nuclear magnetic resonance and size-exclusion chromatography. EV glycosyl residues of Glc, Man, and Gal comprised most probably two major components: a high molecular mass 4,6-α-glucan and a galactofuranosylmannan, possibly an oligomer, bearing a 2-α-Manp main chain linked to β-Galf (1,3) and α-Manp (1,6) end units. The results also suggested the presence of small amounts of a (1→6)-Manp polymer, (1→3)-glucan and (1→6)-glucan. Glycan microarrays allowed identification of EV surface lectin(s), while plant lectin microarray profiling revealed terminal Man and GlcNAc residues exposed at the EVs surface. Mammalian lectin microarray profiling showed that DC-SIGN receptors recognized surface carbohydrate in Paracoccidioides EVs. Our results suggest that oligosaccharides, cytoplasmic storage, and cell wall polysaccharides can be exported in fungal EVs, which also expose surface PAMPs and lectins. The role of these newly identified components in the interaction with the host remains to be unraveled.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Lipidomic Analysis of Extracellular Vesicles from the Pathogenic Phase of Paracoccidioides brasiliensis

BACKGROUND Fungal extracellular vesicles are able to cross the cell wall and transport molecules that help in nutrient acquisition, cell defense, and modulation of the host defense machinery. METHODOLOGY/PRINCIPAL FINDINGS Here we present a detailed lipidomic analysis of extracellular vesicles released by Paracoccidioides brasiliensis at the yeast pathogenic phase. We compared data of two rep...

متن کامل

DCIR interacts with ligands from both endogenous and pathogenic origin.

C-type lectins on dendritic cells function as antigen uptake and signaling receptors, thereby influencing cellular immune responses. Dendritic cell-specific intercellular adhesion molecule-3-grabbing non-integrin (DC-SIGN) is one of the best-studied C-type lectin receptors expressed on DCs and its glycan specificity and functional requirements for ligand binding have been intensively investigat...

متن کامل

Interaction of the Capsular Polysaccharide A from Bacteroides fragilis with DC-SIGN on Human Dendritic Cells is Necessary for Its Processing and Presentation to T Cells

The zwitterionic capsular polysaccharide A (PSA) of Bacteroides fragilis is the first carbohydrate antigen described to be presented in major histocompatibility complex (MHC) class II for the induction of CD4(+) T cell responses. However, the identity of the receptor mediating binding and internalization of PSA in antigen presenting cells remains elusive. C-type lectins are glycan-binding recep...

متن کامل

Geometry and Adhesion of Extracellular Domains of DC-SIGNR Neck Length Variants Analyzed by Force–Distance Measurements

Force-distance measurements have been used to examine differences in the interaction of the dendritic cell glycan-binding receptor DC-SIGN and the closely related endothelial cell receptor DC-SIGNR (L-SIGN) with membranes bearing glycan ligands. The results demonstrate that upon binding to membrane-anchored ligand, DC-SIGNR undergoes a conformational change similar to that previously observed f...

متن کامل

Cell wall proteome of pathogenic fungi.

A fast development of a wide variety of proteomic techniques supported by mass spectrometry coupled with high performance liquid chromatography has been observed in recent years. It significantly contributes to the progress in research on the cell wall, very important part of the cells of pathogenic fungi. This complicated structure composed of different polysaccharides, proteins, lipids and me...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره 5  شماره 

صفحات  -

تاریخ انتشار 2015